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Microstrip Propagation on Magnetic Substrates—

Part I: Design Theory

ROBERT A. PUCEL, SENIOR MEMBER, IEEE, AND DANIEL J. MASSti, MEMBER, IEEE

Abstract—Formulas and graphs are presented for the effective
relative permeability y and the filling factors of magnetic substrates in
microstrip. Both the propagation and the magnetic loss filling factors
are included. In the calculation of these quantities, use was made of
the filling factors for dielectric substrates obtained from Wheeler’s
analysis and a duality relationship between magnetic and dielectric

substrates derived in thk paper.

I. INTRODUCTION

A

LARGE BODY of design information for micro-

strip on dielectric substrates has been accumu-

lated over the last few years [1 ]– [3 ]. Equivalent

design data for magnetic substrates are incomplete. It

is our purpose to present the missing data in a form most

useful to the design engineer. Before proceeding, we

shall review briefly some basic formulas for dielectric

substrates.

A cross section of microstrip on a dielectric–magnetic

substrate is shown in Fig. 1. Provided the frequency is

not too high, this structure will propagate a wave which

for all practical purposes is a transverse electromagnetic

wave. If the dielectric constant k of the substrate is

much greater than unity, most of the electric energy is

confined to the dielectric region in the vicinity of the

strip conductor and ground plane. However, because

some of the electric field also fringes out into the air

space above the strip conductor, the value of the effec-

tive dielectric constant k.ff entering into the calculation

of the characteristic impedance and phase velocity is

less than k, that is 1< k.ff < k. In other words, the propa-

gation “filling factor” for the dielectric, here denoted as

gd, and defined by Wheeler [1] as

keff – 1

“=7-1
(1)

is less than unity. Both k.ff and qd are functions of the

dielectric constant k and the geometrical factor w/?z, the

ratio of the conductor strip width to substrate height.

This functional dependence can be derived from

Wheeler’s paper.

If dielectric losses are present, the effective value of

the dielectric loss tangent tan ~,ff is also less than the

loss tangent of the substrate tan 8~ and can be expressed

in the form [4], [5]
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Fig. 1. Microstrip.

tan I&eff = qd, z tan & (2)

where qd, z is a filling factor for losses given by [5]

k 1 – keff–l
qd,l = qd~ = l_~–1 “ (3)

II. MAGNETIC SUBSTRATES

It would be convenient to have equivalent design

formulas for substrates with magnetic properties. For-

tunately, this information can be obtained from the

above expressions by using a duality relationship for

dielectric and magnetic substrates developed in the Ap-

pendix. This duality, based on an observation of Kaneki

[6], allows one to calculate the functional dependence

of the effective relative permeability p,ff on w/lz and the

relative permeability p of the substrate, once the func-

tional dependence of k,ff on w/h and k is known. Thus

the solution for the magnetic field distribution can be

bypassed.

The duality relationship (which derives from the dual-

ity of k and l/p in Maxwell’s equations) is based on a

TEM-mode approximation for the magnetic case, the

same assumption as used for the dielectric case [1 ]– [3 ],

This relationship takes the form

(4)

Note that the duality amounts to the conversions k-+1/p

and k,ff+l/p,ff in the formulas for the dielectric case.

Equation (4) implies that one need not make a separate

determination of the effective relative permeability if

one has at hand tables or graphs of the effective dielec-

tric constant.
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It follows from (4) and (3) that a magnetic filling fac-

tor for propagation can be defined as

&eff–l — 1
qm =

–1 –1 “
(5)

P

Note that g~(w/h, p) = q~(wJ/h, M-l).

In like manner the expressions for the filling factor of

the magnetic loss tangent tan ~~ and the effective value

of this loss tangent take the form

/Jeff 1 — l.&ff
9.,1 = q.— =

l–p

(6)
P

or

tan 8mff = qm, z tan &, (7)

Our TEM assumption allows us to write simple

formulas for the characteristic impedance 20, guide

wavelength h~, and total substrate loss per wavelength

CYAOfor microstrip on a substrate exhibiting both dielec-

tric and magnetic properties. Thus we have

z, = 20’ d:: (!2) (8)
e

& = Xo/tikeffpeff (cm) (9)

a~~ = 27.3(tan &ff + tan i$mff) (dB). (lo)

The wavelength XO corresponds to free space. Here

2.’ is the characteristic impedance when p = k = 1, which

can be calculated exactly from the capacitance per unit

length [7] for an air dielectric or from Wheeler’s expres-

sions letting k = 1 [1]. The attenuation (10) of course

only represents the substrate losses, to which must be

added the contribution from conductor losses [5].

In Section III we shall present explicit formulas

for p,ff and, by way of review, for k.ff based on Wheeler’s

formulas.

III. DERIVATION OF FORMULAS

Wheeler’s analytic expressions [1] for the characteris-

tic impedance of microstrip as a function of dielectric

constant and the ratio w/h are given in piecewise form,

one solution valid for zu/lz S 2, the other for zPJ/h z 2. The

two solutions do not join exactly at w/h= 2 (about a

5–10-percent error), His results may be graphically

smoothed in this vicinity to join properly.

If we take “Wheeler’s expressions for 2,, and set k = 1

to give ZO’, the value for an air dielectric, then the effec-

tive value of dielectric constant may be obtained from

‘eff= [;;::1”
(11)

1+’ A 2

()
keff = ~ —

A–B
(12a)

and for w/h>2

kff=k ?–D2e
(–) c

where

()

2
~=ln%+~~

w

lk–1

( )[
B=-— ln~+~ln~

2 ‘+1 2kr 1
c=:+:F2”’G+094)l
‘=%+ [%+094)1

( )}–~ln ~~

from which the dielectric filling factors q~ and

and (3), respectively, may be computed.

(12b)

(13a)

(13b)

(13C)

(13d)

qd,h (1)

The expressions for the effective relative permeability

may be derived from the above by employing the duality

relationship (4). Thus for w/h S 2

2P A–B12

()

.— (14a)Peff=l+p ~

and for w/h 22

c’
/.Leff = P

() C–D’
(l’b)

where A and C are given by (13) and B’ and Df are de-

rived from B and D by letting k+p–l, that is,

(15a)

“=+ [:G+094)l
( ))“H#

— ~ln ~ . (15b)

The two filling factors q~ and q~,z, (5) and (6), respec-

tively, may be calculated by use of the expressions for

p,f~ above.

Equations (14) and (15) together with (5)-(7) provide

all the information necessary to design m icrostrip on

magnetic substrates.

IV. GRAPHICAL RESULTS

Since the purpose of this paper is to present design

graphs for microstrip on ferrite and garnet. substrates,

our computations for ~.ff, g~, and q~,1 were made for

values of magnetic constant less than unity, and indeed

only for the practical range 0.4 <M< 1. Because # is less
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W/h

Fig. 2. Effective relative permeability of microstrip as a function
of the relative permeability of the substrate and the geometrical
parameter w/h.

than unity, the value for the air space above the micro-

strip, one should expect the effective value p.ff to fall

between p and unity, that is p <p,i~ <1. One can show

that for w/h~O, ~eff–l~~(l +p–1), ancf for WJ/ha w ,

~.ff+~. 1 In other words, peff is bracketed in the range

2p
Ikueff<l+k” (16)

The curves of peff in Fig. 2 illustrate this expected be-

havior.

The filling factors gn and q~, zderived from p are shown

in Figs. 3 and 4. Because of the mild dependence of q~

on p, only three curves were plotted to avoid crowding.

Observe in Fig. 4 that the loss filling factor becomes

larger with increasing zw/h, a reflection of the growing

importance of the substrate. Using the limits on p,ff

derived above, one may show that q~, z falls in the range

1
— < q.,, < 1.
1 +/.4

(17)

c 0.70 ! 1 I I I \ I I I 1 t I 1 1, 0.70.-s Ill 1111

——.
0,60 I

WIh

Fig. 3. Propagation magnetic tilling factor of microstrip as a func-
tion of the relative permeability of the substrate and the geo-
metrical parameter w/h.

wlh

Fig. 4. Filling factor for magnetic loss tangent of microstrip as a
function of the relative permeability of the substrate and the
geometrical parameter w/h.

V. SUMMARY

Design formulas and graphs were presented for the

effective relative permeability and the propagation and

attenuation filling factors of microstrip on magnetic

substrates. The formulas were obtained by application

of a duality relationship which exists between magnetic

and dielectric substrates which circumvents the need for

solution of the magnetic field distribution in microstrip.

APPENDIX

Experimental verification of our design formulas are
We wish to justify the duality relationship between

given in Part II of this paper [8], where we apply them

to ferrite and garnet substrates, which, operated in cer-
the effective values of the dielectric constant and the

tain biasing states, can be treated to a good approxima-
relative permeability cited in (4), and establish the con-

tion as reciprocal media.
ditions under which it is valid.

Our point of departure is an enumeration of the as-

sumptions for our- analysis, namely, 1) TEM mode of
I Wheeler shows that ~(k + 1) <kerr <k, the lower limit applying

to w/k+O, the upper to w/k+ cc. Our results for the magnetic case
propagation, 2) perfect conductors (infinite conductiv-

are derived with the help of (4). ity), and 3) isotropic, homogeneous, nongyromagnetic
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TABLE I

RELATIONS PERTAINING TO SOLUTION FOR ELECTRIC AND MAGNETIC FIELDS
—.

Condition Electric Potential Magnetic Potential
—

Potential function g~,y!;: I@m(x, y,#)
Field vectors B=VX (k$.) = –kXV’fim

D= eok(x, y) E
Laplace’s equation V$o.= o

H= M--+.L-l(X, y)~
v~jom= o

Boundary conditions
on conductor surfaces .sj, sO

.,
k(x, y)v$..n = –u(s)/eo
(kXn) .VX. = O

(kXn) V& = O
*–1(X, y)vim .n = –poj(s)

on interface S.~ kv+.,1 n =V+.,a.n (lrXn) .V4~,~= (kXn) Vtn,j
(kxn) .V+c,l = (lixn) .V+,,, p–W+m,I .n =V#m,2.n

so -- _

(conductor)

I

x

(substrote)

o

Fig. 5. Cross section of TEM structure relevant to derivation
of duality relationship.

substrate. These assumptions are the ones used in all

microstrip analyses; hence they are not restrictive for

our purposes [1 ]– [3 ].

We assume for generality a cylindrical system of arbi-

trary cross section whose axis is along the Z direction,

the assumed direction of propagation as illustrated in

Fig. 5, Although a closed system is shown for conve-

nience, our analysis also applies to open systems as well.

The assumption of a closed outer conductor is not re-

strictive, since practical microstrip structures usually

have an enclosure for shielding purposes.

With perfect conductors, the currents and charges,

denoted by the surface densities j(s) and a(s), reside on

the conductor surfaces as shown in Fig. 5. Here s is a

transverse surface coordinate on the conductors. For a

TEM mode, the electric field E and the magnetic field

B =pH are in the x–y (transverse) plane. Their spatial

distributions in this plane are solutions of a two-dimen-

sional Laplace equation.

It is convenient to express E as the gradient of a scalar

potential function ~. and B as the curl of a vector poten-

tial function A which is directed along the Z axis, the

direction of the current; that is, A (x, y) = Jnjm, where k

is a unit vector along the Z axis. Thus

E = –V~,(x, y, k) (18)

B= VxA=–kx V~.(.Y, y, P). (19)

Note that like E, B is also proportional tolthe gradient

of a scalar function (not to be confused with a scalar

magnetic potential). Observe that ye depends on the

dielectric constant of the substrate k, but not on the

relative permeability K of the substrate. The converse

is true for ~w. This is characteristic of a TEM solution.

Since Laplace’s equation is satisfied by the vector and

magnetic potentials, then V2~, = O and V2A = kV2fim = O

or V2~~ = O. The solutions of these equations are deter-

mined by the geometry and the usual boundary condi-

tions imposed on E and B at the conductor surfaces and

at the substrate–air interface. These are summarized in

Table 1.

Perusal of Table I shows that 4. and ~~ satisfy identi-

cal sets of boundary conditions provided the normal and

tangential boundary conditions for E ancl B are inter-

changed (which is of no consequence to the solutions for

~, and ~~). Thus the form of the solution fcm +~ is identi-

cal to the form of the solution for *8, if k is replaced by

p–l and provided the surface densities cr(s) and j(s) are

proportional. Assuming for a moment the latter to be

true, then because of the linearity of the system, we may

express ~, and ~~ in the form

~@, y, k) = eO--’(jF(#, y, k) (20)

Y4rt(% Y, M) = /JoI~(% y, M-’) (21)

where F is a scalar function satisfying La.place’s equa-

tion and Q = ~~,u(s) ok, 1 = j~ij(s) ds are the total

charge/length and current on the conductors. Note that

(20) and (21) imply that the magnetic field distribution

can be obtained from a solution of an electrostatic prob-

lem. It is clear that (20) and (21) in conjunction with

(18) and (19) establish the spatial orthogcmality of the

electric and magnetic fields.

In terms of (20) and (21) the effective dielectric con-

stant ~,ff, defined as the ratio of the stored electric

energy per unit length with and without the substrate

present (k= 1) at a specified charge Q, is expressible in

the form

k.,~ = K(g, k). (22)

In a similar fashion, the magnitude of the effective rela-
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tive permeability ,uc!! equal to the ratio of the stored

magnetic energy per unit length, with and without the

substrate present (p = 1) for a specified current is of the

form
1
— = K(g, /.-’) (23)

!Jeff

where the energy density function K is given by

~u
K(g, k) == —n (24)

Here @ denotes the cross section of the propagating

structure, excluding the conductors. The function k(x, y)

equals k in the substrate cross section, and unity in the

air space above it. The parameter g is a geometrical fac-

tor, which equals w/h for the simple microstrip con-

figuration of Fig. 1.

From (22) and (23) we obtain the interesting and

useful duality relation

1
Peff(g, P) =

k. ff(g, /.-l)
(25)

which was to be proven.

How realistic is the assumption of proportionality be-

tween j(s) and u(s) ? For a system with a homogeneous

cross section propagating a pure TEM mode, it is strictly

correct. For a nonhomogeneous system, as we are con-

sidering here, a(s) and j(s) cannot have identical dis-

tributions and this, because we postulate a TEM mode.

Our reasoning is as follows. Suppose we have a TEM

mode, and we assume a(s) and j(s) to be proportional.

Now consider a change in the dielectric constant of the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TSCHNIQUSS, MAY1972

substrate. Surely this will alter the charge distribution.

By our assumption, the current distribution must also

change, and so must the magnetic field distribution. But

this cannot happen for a TEM mode, because the dielec-

tric cannot affect the magnetic field.

Experience has shown that the magnetic field dis-

tribution, or more precisely, the inductance per unit

length of microstrip, is not affected noticeably by the

presence of a dielectric substrate. Vie can only conclude

then that the charge and current distributions appar-

ently do not deviate appreciably from proportionality

and that the capacitance and inductance per unit length

are not sensitive so much to the precise distribution of

charge and current on the conductors, as they are to the

geometrical configuration of the conductors and the sub-

strate.
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