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Microstrip Propagation on Magnetic Substrates—
Part I: Design Theory

ROBERT A. PUCEL, SENIOR MEMBER, IEEE, AND DANIEL J. MASSE, MEMBER, TEEE

Abstract—Formulas and graphs are presented for the effective
relative permeability and the filling factors of magnetic substrates in
microstrip. Both the propagation and the magnetic loss filling factors
are included. In the calculation of these quantities, use was made of
the filling factors for dielectric substrates obtained from Wheeler’s
analysis and a duality relationship between magnetic and dielectric
substrates derived in this paper.

I. INTRODUCTION
&_ LARGE BODY of design information for micro-

strip on dielectric substrates has been accumu-

lated over the last few years [1]-[3]. Equivalent
design data for magnetic substrates are incomplete. It
is our purpose to present the missing data in a form most
useful to the design engineer. Before proceeding, we
shall review briefly some basic formulas for dielectric
substrates.

A cross section of microstrip on a dielectric~magnetic
substrate is shown in Fig. 1. Provided the frequency is
not too high, this structure will propagate a wave which
for all practical purposes is a transverse electromagnetic
wave. If the dielectric constant k of the substrate is
much greater than unity, most of the electric energy is
confined to the dielectric region in the vicinity of the
strip conductor and ground plane. However, because
some of the electric field also fringes out into the air
space above the strip conductor, the value of the effec-
tive dielectric constant k.¢ entering into the calculation
of the characteristic impedance and phase velocity is
less than &, that is 1 <k <k. In other words, the propa-
gation “filling factor” for the dielectric, here denoted as
g4, and defined by Wheeler [1] as

Rest — 1
E— 1
Pa— 1

ga =

is less than unity. Both ks and g4 are functions of the
dielectric constant k and the geometrical factor w/k, the
ratio of the conductor strip width to substrate height.
This functional dependence can be derived from
Wheeler's paper.

If dielectric losses are present, the effective value of
the dielectric loss tangent tan §.¢ is also less than the
loss tangent of the substrate tan §; and can be expressed
in the form [4], [5]
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Fig. 1. Microstrip.

tan dgor; = ga,1 tan 3y (2)
where ¢g4,; is a filling factor for losses given by [5]
k 1 — kesr™?

= = .. 3
R g ®)

II. MAGNETIC SUBSTRATES

It would be convenient to have equivalent design
formulas for substrates with magnetic properties. For-
tunately, this information can be obtained from the
above expressions by using a duality relationship for
dielectric and magnetic substrates developed in the Ap-
pendix. This duality, based on an observation of Kaneki
[6], allows one to calculate the functional dependence
of the effective relative permeability pes on w/k and the
relative permeability u of the substrate, once the func-
tional dependence of k. on w/k and k is known. Thus
the solution for the magnetic field distribution can be
bypassed.

The duality relationship (which derives from the dual-
ity of £ and 1/p in Maxwell's equations) is based on a
TEM-mode approximation for the magnetic case, the
same assumption as used for the dielectric case [1]-[3].
This relationship takes the form

1

w/h =—— . 4
et/ 1) = e @)
Note that the duality amounts to the conversions 2—1/u
and kesi—1/pess in the formulas for the dielectric case.
Equation (4) implies that one need not make a separate
determination of the effective relative permeability if
one has at hand tables or graphs of the effective dielec-

tric constant.
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It follows from (4) and (3) that a magnetic filling fac-
tor for propagation can be defined as

pes§ Tt — 1

gm = ()

wt—1
Note that gm(w/k, p) =qa(w/hb, p=1).
In like manner the expressions for the filling factor of
the magnetic loss tangent tan 8, and the effective value
of this loss tangent take the form

Mest 1 — peit
Gng = Gm— = (6)
u 1—n
or
tan dpmett = gm,: tan om. )

Our TEM assumption allows us to write simple
formulas for the characteristic impedance Z, guide
wavelength A, and total substrate loss per wavelength
a), for microstrip on a substrate exhibiting both dielec-
tric and magnetic properties. Thus we have

Meii
Zoy=2Z¢ /‘/%——f (D) (8)
ef

Ay = Mo/ Vetiptest  (cm) )
27.3(tan Oaete + tan 6me{f) (dB) (10)

The wavelength Ay corresponds to free space. Here
Z, is the characteristic impedance when u =k =1, which
can be calculated exactly from the capacitance per unit
length [7] for an air dielectric or from Wheeler’s expres-
sions letting £=1 [1]. The attenuation (10) of course
only represents the substrate losses, to which must be
added the contribution from conductor losses [5].

In Section III we shall present explicit formulas
for uetr and, by way of review, for kess based on Wheeler’s
formulas.

Il
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I11I. DERIVATION OF FORMULAS

Wheeler’s analytic expressions [1] for the characteris-
tic impedance of microstrip as a function of dielectric
constant and the ratio w/k are given in piecewise form,
one solution valid for w/k <2, the other for w/k>2. The
two solutions do not join exactly at w/k=2 (about a
5-10-percent error). His results may be graphically
smoothed in this vicinity to join properly.

If we take Wheeler's expressions for Z,, and set k=1
to give Z,!, the value for an air dielectric, then the effec-
tive value of dielectric constant may be obtained from

_ Zo(w/h, 1) 2.
b= | S 2] (11)
For w/h<2
14+ % A 2
keit = 5 <A — B) (12a)
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and for w/h>2
Begt = (C”D>2 (12b)
eff =~ C
where
84 1 /w\?
A=1In -+—<—) (13a)
w | 32\
B 1<k—1)[l 5 4] 13b)
= -] — n — — —_
2\E+ 1 2T (
% w+1[1 2 (w + 0.94 13
_2h7rn7r62h ):‘ (13¢)

kE—1 we [w
D= {m [— <— + o.94>]
2wk 2 \2%
' <€”2 )}» (13d)
2 \16

from which the dielectric filling factors g4 and g¢q,;, (1)
and (3), respectively, may be computed.

The expressions for the effective relative permeability
may be derived from the above by employing the duality
relationship (4). Thus for w/h_<_2’

2u <A - B’>2
1+ A

C 2
l«teff=MC_D,

where 4 and C are given by (13) and B’ and D’ are de-
rived from B and D by letting k—u~!, that is,

N

EEACEY A R R
1_.

=l [E (w— + 0.94)]
2 U L2\

() as

The two filling factors g. and gm.;, (5) and (6), respec-
tively, may be calculated by use of the expressions for
Mett above.

Equations (14) and (15) together with (5)—(7) provide
all the information necessary to design microstrip on
magnetic substrates.

Yot = (14a)

and for w/k>2

(14b)

(15a)

IV. GraPHICAL RESULTS

Since the purpose of this paper is to present design
graphs for microstrip on ferrite and garnet substrates,
our computations for pest, gm and gm,; were made for
values of magnetic constant less than unity, and indeed
only for the practical range 0.4 <u <1, Because u is less
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Fig. 2. Effective relative permeability of microstrip as a function

of the relative permeability of the substrate and the geometrical
parameter w/h.

than unity, the value for the air space above the micro-
strip, one should expect the effective value pess to fall
between u and unity, that is u <ps <1. One can show
that for w/h—0, perr '—3(1+u"1), and for w/h— «,
pets—. ! In other words, pets is bracketed in the range

2u
14w

The curves of pess in Fig. 2 illustrate this expected be-
havior.

The filling factors ¢m and gu,; derived from u are shown
in Figs. 3 and 4. Because of the mild dependence of g,
on u, only three curves were plotted to avoid crowding.

Observe in Fig. 4 that the loss filling factor becomes
larger with increasing w/#%, a reflection of the growing
importance of the substrate. Using the limits on st
derived above, one may show that g.,; falls in the range

1
144

Experimental verification of our design formulas are
given in Part II of this paper [8], where we apply them
to ferrite and garnet substrates, which, operated in cer-
tain biasing states, can be treated to a good approxima-
tion as reciprocal media.

B ettt <

(16)

< qm,1 < 1. (17)

! Wheeler shows that (k4-1) <Zeet <k, the lower limit applying
to w/h—0, the upper to w/k— «. Our results for the magnetic case
are derived with the help of (4).

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1972

090

o8 e
080 — : |l w0 7t Lloeo
- - ) Microstrip i b: : o : y
2 : . ClEpeeosi //4»4
S T N
o L1 : ) r/ .
H i w204 ,_*E" sy I
L o070 ] l I V/
I SR
H : -
g | 4
% 0.65 J P /,j ..

L A |-
— Bz
. i 1 ’
060 ——— :
09561 0z 04 06 08 10 20 26 &0 80 100°°
w/h

Fig. 3. Propagation magnetic filling factor of microstrip as a func-

tion of the relative permeability of the substrate and the geo-
metrical parameter w/h.
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Fig. 4. Filling factor for magnetic loss tangent of microstrip as a
function of the relative permeability of the substrate and the
geometrical parameter w/h.

V. SUMMARY

Design formulas and graphs were presented for the
effective relative permeability and the propagation and
attenuation filling factors of microstrip on magnetic
substrates. The formulas were obtained by application
of a duality relationship which exists between magnetic
and dielectric substrates which circumvents the need for
solution of the magnetic field distribution in microstrip.

APPENDIX , .

We wish to justify the duality relationship between
the effective values of the dielectric constant and the
relative permeability cited in (4), and establish the con-
ditions under which it is valid.

Our point of departure is an enumeration of the as-
sumptions for our analysis, namely, 1) TEM mode of
propagation, 2) perfect conductors (infinite conductiv-
ity), and 3) isotropic, homogeneous, nongyromagnetic
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TABLE 1
RELATIONS PERTAINING TO SOLUTION FOR ELECTRIC AND MAGNETIC FIELDS

Magnetic Potential

Condition Electric Potential
Potential function l//e(x, v, k)
Field vectors E=—Vy,
=eok (x, E
Laplace’s equation x,b =
Boundary conditions
on conductor surfaces S;, So k(x, y)Ven= —a(s)/eo
(EXn)-Vi,=0
on interface Sa; Ve -nn=V,

(k><n) Vsbn-— (k><n) V.2

k¢m(x y,
(k%»—-—kwin

H uo w7 (x, ¥)B

Vo, =0

(&EXn) Vigm=0
7 Vi n= —poj(s)

(kXn)-Vim, 1— (kXn)- V\ﬁm 2
lv\bm 1n= ‘pm 21

/

Region 2
(air)

X
Z Region |
k v (substrate)
o)
Fig. 5. Cross section of TEM structure relevant to derivation

of duality relationship.

substrate. These assumptions are the ones used in all
microstrip analyses; hence they are not restrictive for
our purposes [1]-[3].

We assume for generality a cylindrical system of arbi-
trary cross section whose axis is along the Z direction,
the assumed direction of propagation as illustrated in
Fig. 5. Although a closed system is shown for conve-
nience, our analysis also applies to open systems as well.
The assumption of a closed outer conductor is not re-
strictive, since practical microstrip structures usually
have an enclosure for shielding purposes.

With perfect conductors, the currents and charges,
denoted by the surface densities j(s) and ¢(s), reside on
the conductor surfaces as shown in Fig. 5. Here s is a
transverse surface coordinate on the conductors. For a
TEM mode, the electric field E and the magnetic field
B=uH are in the x—y (transverse) plane. Their spatial
distributions in this plane are solutions of a two-dimen-
sional Laplace equation.

[t is convenient to express E as the gradient of a scalar
potential function ¥, and B as the curl of a vector poten-
tial function A which is directed along the Z axis, the
direction of the current; that is, A(x, y) =k, where k
is a unit vector along the Z axis. Thus

E = _V\be(x’ y, k)
B=VXA=—kX VWulx, v, n.

(18)
(19)

Note that like E, B is also proportional to,the gradient
of a scalar function (not to be confused with a scalar
magnetic potential). Observe that ¢, depends on the
dielectric constant of the substrate k, but not on the
relative permeability u of the substrate. The converse
is true for Y... This is characteristic of a TEM solution.
Since Laplace’s equation is satisfied by the vector and
magnetic potentials, then V&), =0 and V2A=kV¥,, =0
or V&, =0. The solutions of these equations are deter-
mined by the geometry and the usual boundary condi-
tions imposed on E and B at the conductor surfaces and
at the substrate—air interface. These are summarized in
Table I.

Perusal of Table I shows that ¢, and ¥, satisfy identi-
cal sets of boundary conditions provided the normal and
tangential boundary conditions for E and B are inter-
changed (which is of no consequence to the solutions for
¥, and ¢,,). Thus the form of the solution for ¢, is identi-
cal to the form of the solution for ., if % is replaced by
u~t and provided the surface densities o(s) and j(s) are
proportional. Assuming for a moment the latter to be
true, then because of the linearity of the system, we may
express ¥, and ¥, in the form

¢e(x> v, k) 60__1QF(x; ¥, k) (20)
¢m<x3 y; :U') :quF(x; y: F‘_l) (21)

where F is a scalar function satisfying Laplace’s equa-
tion and Q= Fg0(s) ds, I=[g;j(s) ds are the total
charge/length and current on the conductors. Note that
(20) and (21) imply that the magnetic field distribution
can be obtained from a solution of an electrostatic prob-
lem. It is clear that (20) and (21) in conjunction with
(18) and (19) establish the spatial orthogonality of the
electric and magnetic fields.

In terms of (20) and (21) the effective dielectric con-
stant ks, defined as the ratio of the stored electric
energy per unit length with and without the substrate
present (k=1) at a specified charge Q, is expressible in
the form

ket = K(g, k). (22)

In a similar fashion, the magnitude of the effective rela-
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tive permeability p.ss equal to the ratio of the stored
magnetic energy per unit length, with and without the
substrate present (u=1) for a specified current is of the
form

1
— = K(g, v ") (23)
Meff
where the energy density function K is given by
f | VE(x, v, 1) |2 dx dy
a
K #) - (24)

fk(x, ) | VE(x,, k) |* dx dy

Here @ denotes the cross section of the propagating
structure, excluding the conductors. The function k(x, y)
equals & in the substrate cross section, and unity in the
air space above it. The parameter g is a geometrical fac-
tor, which equals w/% for the simple microstrip con-
figuration of Fig. 1.

From (22) and (23) we obtain the interesting and
useful duality relation

pete(g, 1) = (25)

keff(g; .Uv_l)
which was to be proven.

How realistic is the assumption of proportionality be-
tween j(s) and o(s)? For a system with a homogeneous
cross section propagating a pure TEM mode, it is strictly
correct. For a nonhomogeneous system, as we are con-
sidering here, o(s) and j(s) cannot have identical dis-
tributions and this, because we postulate a TEM mode.
Our reasoning is as follows. Suppose we have a TEM
mode, and we assume o¢(s) and j(s) to be proportional.
Now consider a change in the dielectric constant of the
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substrate. Surely this will alter the charge distribution.
By our assumption, the current distribution must also
change, and so must the magnetic field distribution. But
this cannot happen for a TEM mode, because the dielec-
tric cannot affect the magnetic field.

Experience has shown that the magnetic field dis-
tribution, or more precisely, the inductance per unit
length of microstrip, is not affected noticeably by the
presence of a dielectric substrate. We can only conclude
then that the charge and current distributions appar-
ently do not deviate appreciably from proportionality
and that the capacitance and inductance per unit length
are not sensitive so much to the precise distribution of
charge and current on the conductors, as they are to the
geometrical configuration of the conductors and the sub-
strate.
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